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m DNNs have an obvious limitation for NLP, they always need a
fixed-sized input. Recurrent Neural Networks (RNNs) on the
other hand operate on sequences of varying length ideal for
text and speech

m Depending on the task, RNNs can be used in different ways

m All of these are fairly straightforward to do in Tensorflow

one to one one to many many to one many to many many to many
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m Update a state given inputs at each timestep
m Can be "unrolled” into a DNN:
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m Vanilla RNNs are difficult to train: the same operation is
applied at ever time step - difficult to optimize for many
time steps (vanishing and exploding gradients)

m When we use RNNs, we usually use a variant that has a
gating mechanism

m Intuition: sometimes we need to forget things, also we want
to learn how much to change our internal state given
certain inputs

m Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735-1780.
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m All graphics and some of the explanations on this and on the
following slides are from: http://colah.github.io/
posts/2015-08-Understanding-LSTMs/

m The repeating module in a standard RNN contains a single
layer:



http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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m An LSTM cell has more complex operations:
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m The key to LSTMs is the cell state.

m It runs straight down the entire chain, with only some minor
linear interactions.

m It makes it easy for information to just flow along
unchanged.
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m Another key element of an LSTM cell is gating. A gate
consists of a sigmoid layer and a multiplication.

m The sigmoid pushes all values to be between 0 and 1

m You can think of it as some kind of "differentiable Transistor”
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m The first step in an LSTM is to decide what information is
going to be thrown away from the cell state.

m This decision is made by the "forget gate layer”

m It concatenates h;_; and x, applies a sigmoid layer and
multiplies the output with the cell state.

fi Je=0Wg-[he—1,2¢] + by)
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m The next step is to decide what new information we’re going
to store in the cell state.

m First, a sigmoid layer called the "input gate layer” decides
which values we’ll update. Next, a tanh layer creates a
vector of new candidate values, Ct.

iv =0 (Wi-[he—1, 2] + by)
C, =tanh(We-[hi—1,2¢] + bo)
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m Now the new cell state is calculated
m We multiply the old state by f;, forgetting the things we
decided to forget earlier.

m Then we add i; - Ct. This is the new candidate values, scaled
by how much we decided to update each state value.
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m Finally we compute the output based on the cell state

m The first step is a sigmoid layer which decides what parts of
the cell state we’re going to output.

m Then, we put the cell state through tanh (values between -1

and 1) and multiply it by the output of the sigmoid gate, so
that we only output the parts we decided to.

htT

@@nh> 0 = O'(WO [ht,l,xt] + bo)

ot 0
o] . ht = o * tanh (Cy)

hi_1

A

December 05, 2019 Part 05: Neural Tagger with RNNs in Tensorflow, Benjamin Milde, Fabian Barteld, Prof. Dr. Chris Bidrékih




Introduction

UH 000000000000 e0
i‘.'i . s .
.,.m,wf:'“;:itzi: g Popular variant of LSTMs: GRU

m Combines the forget and input gates into a single "update
gate.”

m It also merges the cell state and hidden state, and makes
some other changes.

hy
hiy(” Qj > ze =0 (W, [hy—1,24])
Tt = U(Wr : [ht—lyxt])

ﬁt = tanh (W - [ry % hy—1, x4])

ht:(l—zt)*htfl-i-zt*ﬁt
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m Good news! RNNs are first class citizens in Tensorflow, you
don’t have to code the gating mechanism on your own

m Two types of RNNs: static_rnn and dynamic_rnn, also many
types of cells, e.g. LSTMs and GRUs.

m The so called static_rnn expects a list of tensors, one for
each step. Number must be known at graph creation time!

m Sequences of smaller length must be padded!

cell = tf.contrib.rnn.LSTMCell (num_hidden)
list_ of tensors = [x embedd[:,num] for num in range(seq len)]
outputs, state = tf.nn.static _rnn(cell, list of tensors,

dtype=tf.float32)
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outputs, state = tf.nn.static_rnn(cell, list of tensors,
dtype=tf.float32)

m outputs is a list of tensors (?, hidden_size), one of these for
each output.

m For LSTMs, state is a tuple of cand h:

tf.contrib.rnn.LSTMStateTuple

class tf.contrib.rnn.LSTMStateTuple

class tf.nn.rnn_cell.LSTMStateTuple

Defined in tensorflow/python/ops/rnn_cell_impl.py .

See the guide: RNN and Cells (contrib) > Classes storing split RNNCell state
Tuple used by LSTM Cells for state_size, zero_state,and output state.
Stores two elements: (c, h) ,in that order.

Only used when state_is_tuple=True .
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ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ Exercise 1- Tagger with static_rnn

m Make sure you have the newest Tensorflow version!
(python3 -m pip install - -upgrade tensorflow)

m Extend the neural tagger from the previous exercises so that
static_rnn is used, instead of a DNN

m As before, use a fixed length context window (e.g.
left_context=4, right_context=0)

m We provide you with a new exercise file
(05_dnn_tagger Istm_ex.py): the solution for the tagger
from previous exercises, which you need to extend.
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m Using a fixed length RNN isn’t all to practical for NLP
m Ideally, we would like to keep the sequence length dynamic
m E.g. change it from batch to batch, as needed

m Ideally we would like to operate on an input tensor shape
like (None, None) - we don’t know the batch size nor the
sentence lengths in advance!

m That’s what dynamic_rnn is for!
cell = tf.contrib.rnn.LSTMCell (num_hidden)

output, state = tf.nn.dynamic_rnn(cell, x_embedd,
dtype=tf.float32, sequence_length=seq_len_in)
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output, state = tf.nn.dynamic_rnn(cell, x_embedd,
dtype=tf.float32, sequence_length=seq _len_in)

m outputis atensor, e.g. (?, ?, hidden_size)

m For LSTMs, state is again a tuple of cand h. This is dependent
on what you use as cell! E.g. with GRUs, there is no separate
cell state c in the cell.
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m Extend the neural tagger from the previous exercises so that
dynamic_rnn is used, instead of a DNN

m Thereis a new prepare_data_sentences function for
preparing the data, which you must use. Instead of a
window, one training example is now a complete sentence.

m Hints: you need to adapt inputs, also reshape the outputs of
the rnn so that the loss function can be applied correctly.
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m Bidirectional RNNs (e.g. tf.nn.bidirectional_dynamic_rnn)

m Stacking RNNs (tf.contrib.rnn.MultiRNNCell,
tf.contrib.rnn.stack_bidirectional_dynamic_rnn)

m Dropout for RNNs (tf.contrib.rnn.DropoutWrapper)
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