Fabian Barteld, Benjamin Milde

PART 04: IMPLEMENTING WORD2VEC IN

 TENSORFLOWIntroduction

Training embeddings

- We will now implement Word2Vec in Tensorflow
- (Slides smiliar to https://www.tensorflow.org/tutorials/word2vec)

cBOW

Skip-gram

Main concepts I

■ Neural probabilistic language models are traditionally trained using the maximum likelihood (ML) principle (where w_{t} is the target word and h is the context):

Main concepts II

■ Neural probabilistic language models are traditionally trained using the maximum likelihood (ML) principle (where w_{t} is the target word and h is the context):

$$
\begin{gathered}
P\left(w_{t} \mid h\right)=\operatorname{softmax}\left(\operatorname{score}\left(w_{t}, h\right)\right)= \\
\frac{\exp \left\{\operatorname{score}\left(w_{t}, h\right)\right\}}{\sum_{\text {Word w' in Vocab }} \exp \left\{\operatorname{score}\left(w^{\prime}, h\right)\right\}}
\end{gathered}
$$

Main concepts III

■ We train this model by maximizing its log-likelihood on the training set, i.e. by maximizing:

$$
\begin{gathered}
J_{\mathrm{ML}}=\log P\left(w_{t} \mid h\right)= \\
\operatorname{score}\left(w_{t}, h\right)-\log \left(\sum_{\text {Word } w^{\prime} \text { in Vocab }} \exp \operatorname{score}\left(w^{\prime}, h\right)\right) .
\end{gathered}
$$

- However this is very expensive, because we need to compute and normalize each probability using the score for all other V words w^{\prime} in the current context h, at every training step.

Main concepts IV - NCE

- Noise Contrastive Estimation (NCE)
- For feature learning in word2vec we do not need a full probabilistic model. Instead, we train to discriminate the real target words w_{t} from k imaginary (noise) words w :

Main concepts V - NCE

■ Mathematically, the objective is to maximize:

$$
J_{\text {NCE }}=\log Q_{\theta}\left(D=1 \mid w_{t}, h\right)+k \underset{\tilde{w} \sim P_{\text {noise }}}{\mathbb{E}}\left[\log Q_{\theta}(D=0 \mid \tilde{w}, h)\right]
$$

- discriminate the real target words w_{t} from k imaginary (noise) words \tilde{w}
- where $Q_{\theta}(D=1 \mid w, h)$ is the binary logistic regression probability
■ under the model of seeing the word w in the context h and assigning the label 1 for datapoint D, calculated in terms of the learned embedding vectors θ

■ In practice we approximate the expectation by drawing k contrastive words from the noise distribution (i.e. we compute a Monte Carlo average)

$$
J_{\mathrm{NCE}} \approx \log Q_{\theta}\left(D=1 \mid w_{t}, h\right)+\sum_{i=1, w \sim P_{\text {noise }}}^{k}\left[\log Q_{\theta}(D=0 \mid \tilde{w}, h)\right]
$$

■ Now we can choose $k \neq|V|$, in practice 5-10 for small datasets, 2-5 for large datasets

- Negative sampling, as in the word2vec paper, is a variant of NCE and uses a specific distribution (uniform raised to the power of $3 / 4$)

```
loss = tf.reduce_mean(
```

 tf.nn.nce_loss(weights=nce_weights,
 $$
\begin{aligned}
& \text { biases=nce_biases, } \\
& \text { labels=train_labels, } \\
& \text { inputs=embed, } \\
& \text { num_sampled=num_sampled, } \\
& \text { num_classes=vocabulary_size)) }
\end{aligned}
$$

- We can use the NCE loss op of Tensorflow to construct a variant of word2vec. Internally, nce_weights also uses embedding_lookup and does a form of negative sampling directly in Tensorflow.

The embeddings matrix is a variable that we want to optimize:
embeddings = tf. Variable (tf.random_uniform ([vocabulary_size, embedding_size], $-1.0,1.0)$)

Impl. IIII - Tensorflow W2V

We also need variables for the nce_loss:
nce_weights $=t f$. Variable (
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf. Variable(tf.zeros([vocabulary_size]))

Impl. IV - embedding_lookup:

embed = tf.nn.embedding_lookup(embeddings, train_inputs) e.g. If your list of sentences is: $[[0,1],[0,3]]$ (sentence 1 is $[0,1]$, sentence 2 is $[0,3]$, the function will compute a tensor of embeddings, which will be of shape (2,2 , embedding_size) and will look like:
[[embedding0, embedding1], [embedding0, embedding3]]

000000000000000000
 Exercise 1 - simple version

■ Lets put it together: We can use tf.nn.embedding_lookup for the input projection and tf.nn.nce_loss for the loss (no other layers needed!).

- For simplicity, lets also implement CBOW and Skipgram with a window size of 1 .
■ E.g. for "the quick brown fox jumped over the lazy dog"
■ (context, target) pairs: ([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox)
■ We can simplify to: (the, quick), (brown, quick), (quick, brown), (fox, brown), ... CBOW
■ or (quick, the), (quick, brown), (brown, quick), (brown, fox), ... Skip-gram

Exercise 2 - advanced version

- Lets try to make a version that does not use tf.nn.nce_loss, as easy as that makes our lives!
■ We can also do the negative sampling on the host and code up a linear regression as in the previous tutorials
- Host will assign labels (1 for true context pairs, 0 for noise pairs)
■ You have to change the code in the get_batch function and the inputs to your model and adapt your model accordingly

■ Hint1: The negative samples need a second embedding matrix

- Hint2: For the loss, to get the logits, use the dot product between embedding pairs.
- Hint3: There is no tf.dot(), but you can combine tf.reduce_sum $(x, 1)$ and tf.multiply (a, b).
■ Hint4: Readable pure Python code with comments: , or if you're feeling masochistic the original uncommented word2vec C impl at:

Tensorboard

■ Visualize loss, embeddings and much more in your browser
■ You need to add a few lines of code to tell Tensorboard what to log

- Make sure train_summary_dir is a new directory for every new experiment!

```
loss_summary = tf.summary.scalar('loss', loss)
train_summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
```


Tensorboard

- You need to regularly call the train_summary_op in training

■ Not as often as the training step, because it will otherwise slowdown your training if you have more complex summaries

```
if current_step % 100==0 and current_step != 0:
    summary_str = sess.run(train_summary_op, feed_dict=feed_dict)
    summary_writer.add_summary(\overline{summary_str, curren̄t_step)}
```


Tensorboard - running it

```
python3 -m tensorflow.tensorboard _-logdir=w2v_summaries_1499773534
-host=127.0.0.1
```

loss
loss

[] 三

Tensorboard - embeddings

■ Possible to nicely visualize embeddigs, see https: //www.tensorflow.org/get_started/embedding_viz
■ Also checkout http://projector.tensorflow.org/, live demo of pretrained embeddings

