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Wewill now implementWord2Vec in Tensorflow

(Slides smiliar to

https://www.tensorflow.org/tutorials/word2vec)

Introduction

Training embeddings
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Neural probabilistic language models are traditionally

trained using the maximum likelihood (ML) principle (where

wt is the target word and h is the context):

Introduction

Main concepts I
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Neural probabilistic language models are traditionally

trained using the maximum likelihood (ML) principle (where

wt is the target word and h is the context):

P(wt|h) = softmax(score(wt,h)) =

exp{score(wt,h)}∑
Word w’ in Vocab exp{score(w′,h)}

Introduction

Main concepts II
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We train this model by maximizing its log-likelihood on the

training set, i.e. by maximizing:

JML = log P(wt|h) =

score(wt,h)− log

( ∑
Word w’ in Vocab

exp score(w′,h)

)
.

However this is very expensive, because we need to compute

and normalize each probability using the score for all other

V wordsw′ in the current context h, at every training step.

Introduction

Main concepts III
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Noise Contrastive Estimation (NCE)

For feature learning in word2vec we do not need a full

probabilistic model. Instead, we train to discriminate the

real target wordswt from k imaginary (noise) words w :

Introduction

Main concepts IV - NCE
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Mathematically, the objective is to maximize:

JNCE = logQθ(D = 1|wt,h) + k E
w̃∼Pnoise

[logQθ(D = 0|w̃,h)]

discriminate the real target wordswt from k imaginary

(noise) words w̃

where Qθ(D = 1|w,h) is the binary logistic regression
probability

under the model of seeing the wordw in the context h and

assigning the label 1 for datapoint D, calculated in terms of

the learned embedding vectors θ

Introduction

Main concepts V - NCE
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In practice we approximate the expectation by drawing k

contrastive words from the noise distribution (i.e. we

compute a Monte Carlo average)

JNCE ≈ logQθ(D = 1|wt,h) +
k∑

i=1,w∼Pnoise

[logQθ(D = 0|w̃,h)]

Nowwe can choose k 6= |V |, in practice 5-10 for small

datasets, 2-5 for large datasets

Negative sampling, as in the word2vec paper, is a variant of

NCE and uses a specific distribution (uniform raised to the

power of 3/4)

Introduction

Impl. I - TensorflowW2V
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l o s s = t f . reduce_mean (

t f . nn . nce_ loss ( weights=nce_weights ,

b iases =nce_biases ,

l a b e l s = t r a i n_ l abe l s ,

inputs=embed ,

num_sampled=num_sampled ,

num_classes= vocabu la ry_s i ze ) )

We can use the NCE loss op of Tensorflow to construct a

variant of word2vec. Internally, nce_weights also uses

embedding_lookup and does a form of negative sampling

directly in Tensorflow.

Introduction

Impl. II - TensorflowW2V
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The embeddings matrix is a variable that we want to optimize:

embeddings = t f . Va r i ab l e (

t f . random_uniform ( [ vocabu lary_s i ze ,

embedding_size ] , −1 .0 , 1 . 0 ) )

Introduction

Impl. III - TensorflowW2V
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We also need variables for the nce_loss:

nce_weights = t f . Va r i ab l e (
t f . truncated_normal ( [ vocabu lary_s i ze , embedding_size ] ,

stddev = 1 . 0 / math . sq r t ( embedding_size ) ) )
nce_biases = t f . Va r i ab l e ( t f . ze ros ( [ vocabu la ry_s i ze ] ) )

Introduction

Impl. IIII - TensorflowW2V
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embed = t f . nn . embedding_lookup ( embeddings , t r a i n_ inpu t s )

e.g. If your list of sentences is:
[
[0, 1], [0, 3]

]
(sentence 1 is [0, 1],

sentence 2 is [0, 3], the function will compute a tensor of

embeddings, which will be of shape (2, 2, embedding_size) and
will look like:

[[embedding0, embedding1], [embedding0, embedding3]]

Introduction

Impl. IV - embedding_lookup:
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Lets put it together: We can use tf.nn.embedding_lookup for

the input projection and tf.nn.nce_loss for the loss (no other

layers needed!).

For simplicity, lets also implement CBOW and Skipgramwith

a window size of 1.

E.g. for ”the quick brown fox jumped over the lazy dog”

(context, target) pairs: ([the, brown], quick), ([quick, fox],

brown), ([brown, jumped], fox)

We can simplify to: (the, quick), (brown, quick), (quick,

brown), (fox, brown), … CBOW

or (quick, the), (quick, brown), (brown, quick), (brown, fox), …

Skip-gram

Introduction

Exercise 1 - simple version
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Lets try to make a version that does not use tf.nn.nce_loss,

as easy as that makes our lives!

We can also do the negative sampling on the host and code

up a linear regression as in the previous tutorials

Host will assign labels (1 for true context pairs, 0 for noise

pairs)

You have to change the code in the get_batch function and

the inputs to your model and adapt your model accordingly

Introduction

Exercise 2 - advanced version
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Hint1: The negative samples need a second embedding

matrix

Hint2: For the loss, to get the logits, use the dot product

between embedding pairs.

Hint3: There is no tf.dot(), but you can combine

tf.reduce_sum(x,1) and tf.multiply(a,b).

Hint4: Readable pure Python code with comments: , or if

you’re feeling masochistic the original uncommented

word2vec C impl at:

Introduction

Hints
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Visualize loss, embeddings and much more in your browser

You need to add a few lines of code to tell Tensorboard what

to log

Make sure train_summary_dir is a new directory for every

new experiment!

loss_summary = t f . summary . s c a l a r ( ’ l o s s ’ , l o s s )
train_summary_op = t f . summary . merge_al l ( )
summary_writer = t f . summary . F i l eWr i t e r ( train_summary_dir , sess . graph )

Introduction

Tensorboard
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You need to regularly call the train_summary_op in training

Not as often as the training step, because it will otherwise

slowdown your training if you have more complex

summaries

i f cur rent_step % 100==0 and cur rent_step != 0:
summary_str = sess . run ( train_summary_op , feed_d i c t = feed_d i c t )
summary_writer . add_summary ( summary_str , cur rent_step )

Introduction

Tensorboard
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python3 −m tensorf low . tensorboard −−l o g d i r =w2v_summaries_1499773534
−−host = 1 2 7 . 0 . 0 . 1

Introduction

Tensorboard - running it
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Possible to nicely visualize embeddigs, see https:
//www.tensorflow.org/get_started/embedding_viz
Also checkout http://projector.tensorflow.org/, live
demo of pretrained embeddings

Introduction

Tensorboard - embeddings

https://www.tensorflow.org/get_started/embedding_viz
https://www.tensorflow.org/get_started/embedding_viz
http://projector.tensorflow.org/
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