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m We will now implement Word2Vec in Tensorflow

m (Slides smiliar to
https://www.tensorflow.org/tutorials/word2vec)
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m Neural probabilistic language models are traditionally
trained using the maximum likelihood (ML) principle (where
wy is the target word and h is the context):
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m Neural probabilistic language models are traditionally
trained using the maximum likelihood (ML) principle (where
w; is the target word and h is the context):

P(w¢|h) = softmax(score(wy, h)) =
exp{score(ws, h)}
ZWord w’ in Vocab exp{score(w’, h)}
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m We train this model by maximizing its log-likelihood on the
training set, i.e. by maximizing;:

JwL = log P(wt|h) =

score(wy, h) — log ( Z exp score(w’,h)) .

Word w’ in Vocab

m However this is very expensive, because we need to compute
and normalize each probability using the score for all other
V words w' in the current context h, at every training step.
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m Noise Contrastive Estimation (NCE)

m For feature learning in word2vec we do not need a full
probabilistic model. Instead, we train to discriminate the
real target words w; from k imaginary (noise) words w :

v
Noise classifier |@ vs @ @ @ '" @ |
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m Mathematically, the objective is to maximize:

Ince = log Qy(D = 1|lwt, h) +k  E  [logQy(D = O|w, h)]

WNanse

m discriminate the real target words w; from k imaginary
(noise) words w

m where Qy(D = 1|w, h) is the binary logistic regression
probability

m under the model of seeing the word w in the context h and
assigning the label 1 for datapoint D, calculated in terms of
the learned embedding vectors 6

June 20, 2016 Part 04: Implementing Word2Vec in Tensorflow, Fabian Barteld, Benjamin Milde 8/20



Introduction

.U 000000800000 000000
ifi
Universitat Hamburg

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ Impl. | - Tensorflow W2V

m In practice we approximate the expectation by drawing k
contrastive words from the noise distribution (i.e. we
compute a Monte Carlo average)

k
Ince ~ logQp(D = 1w, h)+ >~ [logQe(D = 0|w, h)]

i=1,W~Ppoise
m Now we can choose k # |V|, in practice 5-10 for small

datasets, 2-5 for large datasets

m Negative sampling, as in the word2vec paper, is a variant of
NCE and uses a specific distribution (uniform raised to the
power of 3/4)
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loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary size))

m We can use the NCE loss op of Tensorflow to construct a
variant of word2vec. Internally, nce_weights also uses
embedding_lookup and does a form of negative sampling
directly in Tensorflow.
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The embeddings matrix is a variable that we want to optimize:

embeddings = tf.Variable (
tf.random_uniform ([ vocabulary_size,
embedding_size], -1.0, 1.0))
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We also need variables for the nce_loss:

nce_weights = tf.Variable(

tf.truncated_normal ([vocabulary size, embedding_size],
stddev=1.0 / math.sqrt(embedding size)))

nce_biases = tf.Variable(tf.zeros([vocabulary size]))
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Impl. IV - embedding_lookup:

embed = tf.nn.embedding lookup (embeddings, train_inputs)

e.g. If your list of sentences is: [[0, 1], [0, 3]] (sentence 1is [0, 1],
sentence 2 is [0, 3], the function will compute a tensor of
embeddings, which will be of shape (2, 2, embedding_size) and
will look like:

[[embedding0, embeddingl], [embedding0, embedding3]]
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m Lets put it together: We can use tf.nn.embedding_lookup for
the input projection and tf.nn.nce_loss for the loss (no other
layers needed!).

m For simplicity, lets also implement CBOW and Skipgram with
a window size of 1.

m E.g. for "the quick brown fox jumped over the lazy dog”

m (context, target) pairs: ([the, brown], quick), ([quick, fox],
brown), ([brown, jumped], fox)

m We can simplify to: (the, quick), (brown, quick), (quick,
brown), (fox, brown), ... CBOW

m or (quick, the), (quick, brown), (brown, quick), (brown, fox), ...
Skip-gram
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Exercise 2 - advanced version

m Lets try to make a version that does not use tf.nn.nce_loss,
as easy as that makes our lives!

m We can also do the negative sampling on the host and code
up a linear regression as in the previous tutorials

m Host will assign labels (1 for true context pairs, O for noise
pairs)

m You have to change the code in the get_batch function and
the inputs to your model and adapt your model accordingly
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m Hintl: The negative samples need a second embedding
matrix

m Hint2: For the loss, to get the logits, use the dot product
between embedding pairs.

m Hint3: There is no tf.dot(), but you can combine
tf.reduce_sum(x,1) and tf.multiply(a,b).

m Hint4: Readable pure Python code with comments: , or if
you’re feeling masochistic the original uncommented
word2vec C impl at:
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m Visualize loss, embeddings and much more in your browser

m You need to add a few lines of code to tell Tensorboard what
to log

m Make sure train_summary_dir is a new directory for every
new experiment!

loss_summary = tf.summary.scalar(’loss’, loss)
train_summary_op = tf.summary. merge_all()
summary_writer = tf.summary.FileWriter (train_summary_dir, sess.graph)
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m You need to regularly call the train_summary_op in training

m Not as often as the training step, because it will otherwise
slowdown your training if you have more complex
summaries

if current_step % 100==0 and current_step != O:
summary_str = sess.run(train_summary_op, feed_dict=feed_dict)
summary_writer.add_summary (summary_str, current_step)
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python3 —m tensorflow.tensorboard —Ilogdir=w2v_summaries_1499773534
—host=127.0.0.1
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Tensorboard - embeddings

m Possible to nicely visualize embeddigs, see https:
//www.tensorflow.org/get_started/embedding viz

m Also checkout http://projector.tensorflow.org/, live
demo of pretrained embeddings
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